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ABSTRACT 

A perturbation  model is  developed  which is applicable  to  small-amplitude  moist  convcctive  disturbances of 
scales  ranging  from  those of squall  lines t o  tropical  cyclones. In a11 extension of the  works of SyBno and Haque, dis- 
turbance  development is studied for an  atmosphere  in which  static stabi1it)y may  vary  with  height  and  with  the  sense 
of the  vertical  motion, being  in  general  negative  for  upward  motion  in some substantial  layer. Closed solutions for 
simplified  cases are  exhibited  as well as  results of nurrlerical integration of a  more  realistic  case. The  dynamic  stability 
criterion  depends  on  the  static  stabilities  in  the  ascending  and  descmding  currents  and  their  dimensions  and  geometric 
relationships. Cloud-scale and meso-scale disturbances arc’ more  unstable  than  those of cyclone-scale, and presence 
of the  former  may  tend  to  destroy conditions  favoring  development of the  latter.  Evaluation is made of, the linear- 
ized  effects of parallel  convective  bands,  an  “eye”,  the  tropopause,  nonhydrostatic  motions,  surface  friction,  and 
various  boundary  conditions.  Comparison of solutions  with  observational  features  shows  fair  agreement  in  some 
respects,  improving  considerably  when  nonlinear effects are  qualitatively  considered.  The  disturbances  are  effective 
in transporting  kinetic  and  potential  energy  outward  from  the  actively  unstable  updraft.  Nonlinear  interactions 
tend  to  transport  heat  upward  to modify the  initial  static  stability  distribution. A second-order  dynamic  stability 
criterion,  obtained  by  consideration of nonlinear effects, tends  to  favor  development of an  existing  finite-amplitude 
disturbance of tropical  cyclone scale. 

1. INTRODUCTION 

One of the  most successful mathematical tools for  the 
study  and elucidation of meteorological phenomena  has 
been  the  linearized  perturbation model. Our  present 
understanding of synoptic-scale  motions  in  the  tropo- 
sphere is, in  fact,  strongly  dependent  upon  studies of 
linearized  barotropic and baroclinic  motions  and  these also 
have  been  necessary  prerequisites  to  construction of useful 
-nonlinear  forecasting models. In  light of this  background 
it would  seem that  the  study of linearized  moist  convec- 
tion  might  provide  a useful background  to  attempts a t  
dynamical  forecasts  for regions and scales of motion  for 
which  such  phenomena are  important. 

“Dry” convective  motions, i.e,., those  involving  no 
changes of phase,  have  been  studied  theoretically and 
observat’ionally  for  many  years.  Results of linear 
theory--the stability  criterion  including  the effects of 
scale, symmetry,  and  the fluid parameters-have  been 
fairly well verified in  the  special cases where  the  assump- 
tions of the  theory  hold.  The  importance  and  complexity 
of the  phecomenon  are  such  that  it still  provides  a  fertile 
field for  investigation,  purt’icularly  in  regard  to  nonlinear 
effects. I t  seems  likely,  however, that  many  important 
forms of atmospheric convect’ion cannot  be considered as 
special cases of BBnard cellular convection. In  particular, 1 
t’he largest  important  form of direct  convective  circulation, 
the  tropical cyclone, develops in considerable contradic- 

1 



2 MONTHLY WEATHER  REVIEW JANTJABY 1 

tion  to  the scale selectivity  results of BBnard cell theory. 
While this  contradiction has never  been  adequately  re- 
solved, it is perhaps  generally  agreed that consideration 
of condensation effects is indispensable t'o its  satisfact,ory 
explanation. 

I n  recent  years two authors  have considered linear 
solutions of a  complete  nonviscous  set of hydrodynamic 
equations  with inclusion of condensation effects; in  both 
cases the  results were applied  principally to tropical 
cyclogenesis. Sybno [21] considered a frictionless quasi- 
static  system  with  stat'ic  stability  negative for all  vert,ical 
motions,  and allowing a  certain  very  restrictive  form of 
basic flow obtained  solutions  similar to  t'hose of type I 
of this  investigation.  Haque, [8] considered motions on a 
basic  rest state,  but allowed the  st'atic  stability  to  change 
sign  with  the sense of the  vertical  motion, to approximate 
the effects of moist  updraft  and  dry  downdraft.  He also 
used the  nonhydrostatic  vertical  equation of motion  and 
considered  the effects of an "eye" and  (somewhat  errone- 
ously)  the  tropopause. I n  .both  these  studies  there were 
certain deficiencies in  the  physical  interpretation of the 
results. I n  particular, no evident  attempt was  made to 
reconcile the  stability  criterion, which indicated  complete 
dominance of cloud-scale systems,  with t'he actual  exist- 
ence and  growth of disturbances of muc,h  great,er t'ime and 
space scales. There was  no  consideration  given  to  the 
possibility of line-symmetric  disturbances,  or of circular 
convective  bands  about  a  center.  Finally  the  energy 
transports  and  transformations were not discussed and 
no  mention was made of nonlinear effects, even  as  to 
orders of magnitude. 

This  study  may  be considered to  be,  in  large  part,  an 
extension of the  results of Syano  and  Haque  in  an  attempt 
to  rectify  the deficiencies mentioned  above,  and t'o include 
as well cursory  investigations of the effects of surface 
friction, some variation of boundary  conditions,  and 
realistic  distribution of static  stability  for  bot,h  moist  and 
dry processes. It appears  that  there is also some  appli- 
cability of linear  methods  to meso-scale convection;  e.g., 
that, of cloud bands,  as  distinguished from  individual  cloud 
cells. It was  therefore considered desirable  to develop 
some cases pertaining  to meso-scale  motions and  their 
interrelation  with  those of larger scale. 

A further  purpose of this  study  should be ment>ioned, 
one  which has  particular significanc,e to  the field of numeri- 
cal  weather  forecasting.  Recent  results of Phillips [19] 
and Smagorinsky [20] lead  to  the conclusion that a fore- 
cast  scheme  using  the  primitive  equations of motion is 
practical  and  in  several  respects more satisfactory  for 
prediction of baroclinic  motions than schemes using 
derived  equations. If such a scheme is used in a model 
in which moisture  and  its  thermodynamic effects are  in- 
cluded  explicitly and  static  stability is self-determined, 
then  one  may  anticipate  the occasional development of 
conditionally  unstable  inertio-gravitat'ional  motions,  which 
may grow to  large  amplitudes unless suppressed by some 
more-or-less arbitrary  method. The  conclusions of this 

study  indicate  that meso-scale and cloud-scale convecti 
are  generally  sufficient  physical mechanisms  for releast 
this  instability.  Under  certain special initial conditic 
however,  larger scale motions  may  develop, whose dim 
sions  are  determined  by  both  the  linear  and nonlin 
terns  of the  dynamic  equations. 

2. PLAN OF INVESTIGATION 

As stated  in  the  introduction,  the  principal results 
this  study will  be obtained  by use of the  linearized atn 
pheric  equat'ions.  The effects of nonlinear  terms T 

however, be considered in assessing t'he results  and valic 
of t'he linear  theory  and  for  obtaining  second-order c 
rections  to  these  results.  The  variation of Cori 
parameter  with  latitude  and  the possible existence c 
nonuniform basic flow will be  ignored,  as well as  the effc 
of nonuniform  orography. It is  found possible, howe 
t,o investigate some of the  effects of surface  friction, 
tropopause,  and  acceleration  terms  in  the  vertical eq 
tion of motion. Some of the  most  significant resultr 
this  investigation  are  found  upon  consideration of m 
convective  elements  surrounded  by  or  scattered throug 
nonsat'urated  air  mass. 

The  investigation proceeds as follows: The basic lir 
nonviscous  differential  equations  in  the  p-coordinate t 

tern are  reduced  to  a single fourth-order  partial diffej 
t'ial equation  with w as  the  dependent  variable.  Bound 
and init'ial  conditions  are  constructed  from  appropr 
physical considerations.  Eigenfunction  solutions 
obtained  in  time,  space,  and  pressure  for  varying  sp 
fications of hydrostatic  stability  and  boundary conditic 
Eigenvalue  considerations  lead to  a  wave equation  re 
ing the  horizontal  and  vert'ical  disturbance  scale  par: 
eters,  hydrostatic  stability,  and  rate of disturbance grow 
The wave equation is investigated  to  clarify  the relat: 
ship of the  factors  determining  growth  rate.  Correctj 
to the wave equation for nonhydrostatic  terms  in 
vertical  equation of motion  are discussed and  the C 
relat,ionship of the  solutions to  internal  gravitatic 
waves is pointed  out. 

The energy  transformation  and  transport  terms 
nest considered, and special attention is paid  to  the trr 
fer of energy  from  active  (moist) regions to  adjoir 
passive (dry) regions. 

Finally we investigate  the  nonlinear  terms arir 
when  t,he linear  solutions  are  substituted  into  the CI  

plete meteorological equations,  in  order  to  determine 
validity of the  perturbation  approach,  to  show  the  char 
in the form of the  disturbance  and  in t,he stability critel 
produced  by  nonlinear  terms,  and  to  indicate effects 
the dist,urbances  upon  their  environment. 

3. DIFFERENTIAL  EQUATIONS  AND  BOUNDARY 
CONDITIONS 

The linearized  nonviscous quasi-static  equations 
atmospheric  motion,  continuity,  and  heat  may be wril 
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with  pressure  as  the  vertical  coordinate (see Eliassen 
141) as follows, where perturbations were  assumed  on  a 
basic  barotropic  rest  state: 

b@ -+a=O 
dP 

v-v+- =o bo 
bP 

ba 
bt 
" uw= 0 

where V is the  horizontal  velocity, @ the  geopotential, a 
the specific volume,  and w=dp/dt, the  quantity  analogous 
to  vertical  motion.  The Coriolis parameter f is assumed 
constant  and  the  static  stability  analog U= - (bZ/bp+J 
~ p )  is  a function of the  space  variables  only, where 
K is a polytropic coefficient, equal  to c p / c ,  in the case of 
dry  motions.  This  set is reduced to a single equation 
in w by  the  elimination of variables  as follows: Equation 
(1) is operated  upon successively by  the  horizontal  diver- 
gence and  vertical  curl'  component  operators  and  the 
vorticity  eliminated  between  the  two  resulting  equations 
to yield an  equation  in  divergence  and Q,. Divergence is 
eliminated in  favor of vertical  velocity  by (3),  and  the 
result combined with (2) and (4) to  eliminate (Y and Q, and 
obtain  the desired equation  in w. 

The  stability  factor u is the  most  important  determinant 
of both  the  physical  and  mathematical  features of equa- 
tion (5). By use of the  hydrostatic  equation  and  the 
equation of state we can  represent  this  parameter  as 
follows: 

where y,=g the dry or moist  adiabatic  lapse  rute, 

-yac=g[ R ,  the  autoconvective  lapse  rate,  and y= - bT/bz, 
the  actual  atmospheric  lapse  rate. Values of u for both 
dry and  moist  motions  have been  calculated  from  virtual 
temperatures for the  mean  hurricane season  tropical at- 
mosphere  recently  published by  Jordan [la], and  are given 
in table 1 ,  where ad is the  dry  and u, the  moist  stability. 

At levels above  the  tropopause, where ,F= constant, 
equation (6) shows that: 

R K  - 

and  therefore l/u+O as p2. 

The  top  and  bottom  boundary  conditions  for  solutions 
of ( 5 )  required  by  physical  considerations  are,  respectively 

w=O a t  p=O (8) 
w=O a t  z=O (9) 

Expansion  and  linearization of the  second of these give 
where w is the  vertical  velocity. 

the form 

-+Zw=O at  z=o. b@ 
d t  (10) 

The  surface z=O ' corresponds  approximately  to  the 
pressure  surface p = p o + Q , ( p o ) / Z ( p o ) .  By analogy  with 
t,he simple t,reatment of waves  on a fluid surface,  however, 
we assume (10) to apply to a  pressure  surface, so that 

bQ, --.+cuO=O a t  p=po. bt (11) 

A further simplification, which will be  shown  to  introduce 
little  error  in  solutions of the  tJypes considered in  this 
study, consists of neglect of the  first  term of (11),  reducing 
it to  the  form: 

w=o at  p=po. (12) 

The  latter is know11 in  numerical  forecasting  to  be a 
filtering condit'ion for  elimination of external  gravitational 
waves (Hollman [lo]). 

For consideration of the effects of a  tropopause it will 
be shown t'hat (8) may be effectively applied a t  a pressure 
levcl p H ,  where pH is  slightly less than p T ,  the  tropopause 
pressure. 

The effects of surface  friction  are  accounted for, rather 
crudely, by assuming  a forced vertical  motion a t  the  top 
of the  friction  layer,  proportional  to  the  geostrophic 
vorticity,  that is 

w= B r-n) v2 Q, slt p = p F  =900 mb. ,031 

where B is  a  nondimensional coefficient, perhaps  a  function 
of scale. Assuming an  Ekman  spiral  velocity profile 
in the  friction  layer,  Charney  and  Eliassen [3] have 

TABLE 1.-Values of dry and  moist  static stability for the  mean 
hurricane  season  tropical  atmosphere 

Pressure (mb.) 1 od(lO-~m.*mb.-z sec.-2) I u w(10-3m.2mb.-z sea.-*) 

18.26 
20.7 
24.6 
28.2 
32.0 
36.7 
39.0 
39.3 
42. 1 

104.2 
43.3 

164. 
344. 

1837. 
788  

-9.96 
"8.00 
-5.81 
-5.51 
-5.40 
-6.04 

-5.31 
-6.58 

-4.06 
"2.32 
-1.30 

4.02 
8.17 

17.92 
30.3. 
98.9 

159. 
341. 
784. 

1837. 
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shown that  B=(sin 2 4 ) / 2 ,  where 4 is the  indraft  angle 
at  the surface. The  Ekman spiral,  however, is not 
commonly  observed in  the  subcloud  layer  over  the  tropical 
oceans. It turns  out  that we do  not  need  to know B 
exactly, but only its sign and  general  order of magnitude. 
We assume,  therefore that lRl<1 and  that B is positive 
for  large  scales of motion  and  negative  for  small scales 
(where friction  opposes  the norm.al indraft). 

As to  external  lateral  boundary  conditions,  in  most 
cases we consider the  atmosphere  to  be  horizontally 
infinite, so that  the only  requirement  is that  the  dependent 
variables  remain  finite  over all space. In  the one ca,se 
in which lateral  limitations  are  used,  it  is  assumed  that 
the velocity normal  to  the  boundary  vanishes. 

It will later  be  shown  that  meaningful solut,ions of ( 5 )  
exist for  which the  static  stability  parameter, U, may be 
discontinuous in the  horizontal  and/or  vertical. At the 
discont,inuities the diff erent'ial  equations  involving u 
are  inapplicable  and  must' be replaced by  internal  boundary 
conditions. We assume that these  conditions consist of 
the  cont>inuity of CI, (dynamic  condition)  and  the  normal 
wind component  (kinematic  condit'ion)  across the  bound- 
ary.  Thus  for a vertical  internal  boundarS (u dis- 
continuous  horizontally) 

where c, is  the  wind  component'  normal  to  the  boundary, 
or for  a  horizont'al  boundary 

The  superscripts (1) and (2) refer to opposite  sides of the 
boundary. 

Since E ,  and  therefore u, is not  a  function of time, a 
separable  time  solution may be  assumed,  consisting ol' 
positive and  negative  exponent  terms. We are  in- 
terested  in unstable  waves,  and we t'llerefore ignore the 
negative  exponential  and  write, 

where fi is the  spatial  function  satisfying  the  reduced 
differential equation 

V2(Ufi) + (f'+ q 2 )  '?= 0. (17) 
d'Q 
dP 

Inspect'ion of table 1 shows that,,  as is generally  known, 
static  stability is negative  with  respect t,o the moist, 
adiabatic process in  the low  levels of the  tropical t,ropo- 
sphere  in  summer, but is positive  for dry mot,ions. Since 
the  atmosphere  in  these regions usually  contains  sub- 
stantial  amounts of moisture it is frequently  only  a  small 
exaggeration to  say  that all upward  motion  proceeds at  the 
unstable  moist  adiabatic  lapse  rate  and all downward 

mot'ion at the  stable  dry  rate. If then, we equate  satu- 
rat'ed  cloudy regions with  negative  values of u (and w )  and 
dry clear  regions  with  positive u (and a), equation (17) 
becomes a mixed  elliptic-hyperbolic type  equation  with  an 
internal  boundary  condition.  The general theory of such 
systems is far from  well established,  alt,hough  they  are 
frequently  encountered  in  the study of transonic flow (see, 
e.g.,  Frank1 [ 5 ] ) .  KO method  has been devised for obtain- 
ing  an  analytic  or  numerical  solution of the  system  with 
realistic  values of u in  both  the  moist  and  dry regions. 
I t  is relatively  simple,  however,  to  obtain  solutions  for u 
const'ant  or  a  variable  function of only  one  coordinate. 
In  this  way we may  qualitatively  approach  the  results of a 
solution of the physically  realistic system  by considering 
three general types of solution, corresponding to  three 
approximations  to  the  true  stability  function. 

Type I solut'ions are  obtained for u equal  to a constant. 
The  system here is similar to  that used by  Sybno  and 
yields results,  in  particular  the  dynamic  stability  criterion, 
which set'  a standard of comparison  for  more  complicated 
cases. For  type I1 we allow u to  vary  in  the  horizontal 
only,  being  negative in  moist  regions  and  positive else- 
where, and we further  restrict it, and  all ot'ller quanti'ties 
t.0 one-dimensional variation.  Type I11 solutions  are 
obtained  under  the  assumption  that u is constant hori- 
zontally  but'  variable  in  the  vertical.  This allows con- 
siderat>ion of the effects of stable  layers  and  the  tropopause, 

It is possible to  obtain simple  solutions  for a fourth 
type of stabilit'y  variation;  that is, where u is a  function of 
pressure  multiplied  by a function of horizontal  space. 
Such a solution was considered by  Haque,  but  the r e d ?  
are not particularly meaningful. Table 1 shows that 
uW and ud are of approximately  eq1.d  magnitudes  and 
opposite  signs in  the low levels, but  are  essentially  identical ",  

above 200 mb.  Thus  this  fourth  type of solution is not a 
subst,it,ute  for  the  presently  unobtainable  solution  for  the 
realistic  form of u. 

4. TYPE I SOLUTIONS 

For u equal  to  a  constant,  one can  immediately  separate 
variables in (17) and  obtain  the  reduced differential 
equations  in  the  form 

d2P K2 -+",P=O 
d P 2  Po 

where Q=P(p) W' (x, y) and (K/p,J2 is the  separation 
constant. If boundary  conditions (8) and (12) are  applied 
to  (18), i t  is found that K is am eigenvalue  such that 

K=m, n=1,2, . . . (20) 

The use of boundary  conditions (8) and (1 1) leads  to a 
somewhat,  more  complicated  relation 
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K tan K= -upo/&,. (21) 

The  right-hand side is much smaller than  unity,  and solu- 
tions of (21) may be found  by expansion of t'he  left  side 
about  the  approximate (zero-order)  solutions  given by 
(20). To  the first  order  these  solutions are 

For n 2 1 the eigenvalues obtained  from  the  more  accurat'e 
lower boundary condit'ion are  essentially  unchanged  from 
those of the  more  approximate case. The solution  for 
n=O represents  an  cxternal  gravity  wave which is not 
of interest  in  this  study.  We  are  therefore just'ified  in 
using lower boundary  condition (12) as sufficiently 
accurate  for  the  present  purposes. 

Elementary  solutions  to (19) may  be  found  in  any of 
several  forms,  depending on  the  coordinate  system  used. 
For  simplicity we choose to specialize the  system  to 
one-dimensional variation  in  either  the  Cartesian  or 
cylindrical  coordinate  syst>em  wit'h symmetry  about  the 
origin and W always  finite.  Thus H7 is either  an  even 
function of J: or  a  funct'ion of r .  In  either case the PO- 

efficient of the second term of (19) must also assume 
discrete  values  (eigenvalues) and we may  write 

where k=a/2 in  t8he  Cartesian case, k=2.405 (the  first 
zero of the Bessel function of order  zero)  in  the  cylindrical 
case, and L is the  distance  from  the origin to  the  point 
where W first  changes  sign. The solutions  for w in  the 
Cartesian case are  as follows: 

o=AePt sin ~ cos -1 k=a/2. n a p  kJ: 
Po L 

The  wave  equation  may  be  found  as  a  condition which 
simultaneously sat'isfies (19), (ZO), and  (23),  t'hat, is 

Solutions  for a, V, and a for  the  Cartesian case are 
as follows: 

Circularly  symmetric  solutions  are  ident,ical to  the  above 
except  for the  replacement of cosine and  sine  functions 
by Bessel functions of order zero and  one,  respectively. 

Figure 1 shows  horizontal profiles of the  above  solutions 
for W ,  +, and  the  divergent  velocity  component,  and 
figure 2 illustrates  the  vertical  variation of w and 0, the 
horizontal  divergence. We see that for  real  positive pl 
upward  motion  in  the  center (A<O) corresponds  to  negative 
perturbation  geopotential  and  convergent cyclonic indraft 
in  the lower  levels (p/p,,>0.5) and tmo  positive  geopotential 
and  anticyclonic  divergent  outdraft  in  the  upper  levels. 
The specific volume  (and  temperature)  perturbation  has 
its  maximum  in  the  middle levels, and is positive  for u<O. 
The rat'io of the  divergent  to  t'he  rotational  wind velocity 
can  be  seen,  from  (27),  to  be  equal  to p/j, which the wave 
equation shows to be a function of static  stability  and 
t'he  scale of motion.  We also note  that solut'ions  for  all  the 
dependent  variables  oscillate  out to infinit'y.  This will not 
be true  for  subsequent cases in which u is allowed to  vary 
with  the sign of the  vertical  mot'ion. 

The  dynamic  stability  crit,erion  arising  from wave 
equation (25 )  is  the following: 

f Unstable 

1 Stable 

Unstable  solutions may exist only  for u<O and  then only 
if the  ratio of the  horizontal  to  the'vertical scale is suf- 
ficiently- small.  For  example, if we set  in u= -3X10-3 
m.2  mb.?  as a reasonable  order of magnitude 
(justified in  a  later  section) we find that unstable waves 
may exist at  latitude 203 for L<500 km.  approximately, 
or  roughly the size range of large  tropical  cyclones. If 
the  stability  criterion  indicates  imaginary p, then  the 
solutions (24)-(28) represent  standing  inertio-gravita. 
tional  waves.  Traveling  wave  solutions  are  also possible, 
of course, and  such waves will have a wave  speed,  in  the 
Cartesian  system,  equal  to 2lplL/a. 

Equation ( 2 5 )  indicates  that p approaches  infinity if 
L/p,+O. This  obviously  unreasonable  result  is  due  to  the 
quasi-static  assumption  and neglect of acceleration  terms 
in t'he vert'ical  equation of motion. If these  terms  are 
included  in  a derivation  in  the 5 ,  y, z system,  as was 
exhibited by  Haque [8], and  the  terms  in  the  resulting 
wave equation  transformed  to a similar  form  to  those  in 
( 2 5 ) ,  the  latt'er is modified as follows: 

where Z is a specific volume  averaged-  through  the  depth 
of the  system.  Evaluation of the second term of the 
denominat'or  shows it  t,o  be small  for L>10 km., i.e. (30) 
reduces to (25), but  rapidly  increasing  for smaller dis- 
turbances.  This  corresponds  roughly  to  the scale of 
motion  for which nonhydrostatic  terms  are of impor- 
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FIGURE 2.-Type I vertical  solutions.  (soid  line), w (dashed, 
line) scale  units  normalized  by  maximum abscissae. 

FIGURE 1.-Type I horizontal  solutions,  moist  motions  everywhere. 
Slab  symmetry (solid),  circular symmetry  (dashed). (.4) w at 
p = p o / 2 .  (B) @ a t  p=p,.  (C) ( -u )  or (-vT) a t  p = p ~ .  

tance. As L/p-0, that  is,  for  very  narrow,  "tall" dis- 
turbances, (30) reduces  to 

p2= -(E) u 
2 

which  then  represents  a  finite  maximum growt'h rate a,nd, 
of course,  indicates  that  the Coriolis term is unimportant 
for small scales of motion.  The  dependence of p on 
horizontal  scale  and  static  stability is shown  in figure 3, 
in which n= 1, po=lOOO mb., E=1.4X103 ~ m . ~  gm.-l, 
k= 7r12, and j =  5 X sec.-l 

Equation (30) and figure 3 show that  the maximum 
growth  rate occurs for L=O. Since observat'ions  show 
that  most  rapidly growing  cloud  convection cells are 
roughly  as wide as  they  are  tall,  one  might  expect  to 
find the  real  maximum  growth  rate  to exist for L =: 10 km. 
This  discrepancy is  caused by  the neglect of internal 

- 

viscosity, diffusion, and  entrainment effects in  the present 
model (cf. Godske et  al. [7], chapter 9) .  

A more  important  discrepancy between the  stability 
t'heory  and  observat,ions lies in  the  frequent occurrence of 
large-amplit,ude  convective  disturbances of horizontal 
dimensions  much greater  than  those  having  the maximum 
linear  growth  rate. Bull understanding of this bimodal 
t'endency will doubtless  require  thorough consideration 
of nonlinear  and  dissipat'ive effects, and  the role of large- 
scale,  quasi-st'eady-state  motions in accumulating mois- 
ture a t  higher  altitudes  than  normal.  Linear  theory 
can  provide  certain  necessary  conditions for further 
development of preexisting  disturbances of a  given scale 
and  shape. It can  say a little  about  the expected  relative 
frequency of various  disturbance scales, and also say a 
little  about  the effects of widely different scales upon 
each  other. 

5. TYPE I1 SOLUTIONS 

We  next c.onsider the effects of the  horizontal  variation 
of static  st,ability  and,  in  particular,  the  variation caused 
by  a  discontinuous  change in the  polytropic exponent, as 
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L in kilometers 

FIGUILE 3.-Wave equation (25), dotted line, and (30), solid line, 
f .  for varfous values of u shown on the curves. f=5X sec. - I ,  

p,=lOOD mb. n=l, k = r / 2 .  

from a moist  to a dry process. We  assume  for  simplicity 
that u is a  negative  constant  in  one  or  more  moist  regions 
and a  positive constant elsewhere. Of the  various possible 
geometric arrangements of t'he  moist  and dry regions, the 
following cases have been  chosen for  presentation  as hold- 
ing  particular physical interest. 

Case 1: Moist  (statically  unstable)  ascent  in  the  center, 
surrounded  by  dry  (statically  stable)  descent out to 
infinity: 

(a) Slab  symmetry  (Cartesian  coordinates). 
(b)  Circular  symmetry (cylindrical coordinates). 

Case 2: Same  as case 1 except  horizontally  bounded  by 
rigid walls a t  finite  distances  (slab  symmetry  only). 

Ca,se 3: Dry descent  in  the  center,  surrounded  by  moist 
ascent  and  dry descent  outside to  infinity  (slab). 

Case 4: Moist  ascent  in  the  center,  surrounded  by 
(infinitely) many  alternating  bands of dry descent  and 
moist  ascent,  dry  descent out,side to  infinity  (slab). 

CASE 1 

Case 1 is the simplest possible model in which  compen- 
sating  dry descent  is  included. The principal  result of 
the  development is the  appearance of a transcendental 
equation  obtained  from  application of the  internal  bound- 
ary condition to  the otherwise independent  solutions  for 

541417-60--2 

t'he  moist  and dry regions. This  transcendental, which 
we call the  compatibility  condition,  serves  to define a 
dynamically effective static  stability, a, in  terms of the 
values of u in  the  moist  and  dry regions and  their geometric 
relationships.  We  then  can  replace u by a in the wave 
equations  and  stability  criteria  derived  for  the  type I 
solution  and  the  latter  maintain  their  essential signifi- 
cance. Also in case 1 the differences between cirmlar  and 
slab  symmetry  are  investigated  and  presented. 

We consider  two  solutions to  equations (17), (8), and 
(12), one  valid  within an  inner region, 1x1 or r<L, where 
u=uw<O, and  the second outside  this region, where 
u=ud>O. Thus L is now defined as  the half-width or 
radius of the  moist  motions  only.  For each of the regions 
variables  may be separated in (17) exactly as for  type I, and 
solutions  to  equation (18) are  identical  with those of the for- 
mer  example. We will henceforth  in  this  section  set n= 1 ; 
i.e., only  one  vertical  mode of oscillat,ion will  be considered. 
Finally we define a to  satisfy  the  wave  equation,  that is 

Under  these  conditions  the  horizontal  differential  equation 
(19) may be solved separately  for  the  moist  and  dry 
regions with  apparently  independent  amplitude  constants. 
Application of the  internal  boundary  conditions (14), 
however, constrains  these  constants  and  further generates 
a  condition of compatibility between the  solutions for the 
adjoining  regions, which is  for the  slab  and circular 
symmetry case  respectively. 

tan [ k ( C r / ~ , ) ' ~ ~ ] = ( - u ~ / u , ) ~ ~ ~ ,  k=a/2 (33a) 

where J ,  and K,  are  the  nth-order Bessel  functions of real 
and  imaginary  argument,  respectively, which  vanish a t  
infinity (see Watson [231). 

The  solutions  for w in the  moist  and  dry regions for slab 
symmetry  are  as follows: 

r p  k(Z/uw)l'zx, x 
w,=Aeql sin - COS PO L I l <L  (34) 

wd=? cos [ k ( a / ~ , ) ' / ~ ]  Aegt sin 2 
Po 

U 

x exp [k("/u,)'/2 ( l - ~ x p ) ] ,  izl>L (35) 

Solutions  for  the  remaining  independent  variables  and  the 
circularly  symmetric  solutions  are  related  to  those  above 
in a similar  manner  with (24)-(28). 

The horizontally  variable part of the  solutions for w ,  
@, and u or vr (radial  velocity)  are  shown  in figure 4. In 
comparing  these  with  type I we note,  first,  the difference 
in  behavior  for  large 1x1 or r .  In  this case the geopotential, 
vertical  and  horizontal  velocity,  etc.,  fall off exponentially 
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3 

4 """_ """_ 
5 4 5 

\\\\\ o u   t d r a f t  

FIGURE 4.-Type 11, case 1, horizontal  solutions,  moist  region 
hatched.  Slab  symmetry  (solid),  circular  symmetry  (dashed). 
(A) w a t  p=p0 /2 .  (B) @ a t  p=po. (c) ( - u )  or ( - u 7 )  at  p=po. 

in  the  dry  region, showing the passive forced nature of the 
dry motions.  At  the  same  time  the  dry  motions  act  some- 
what  as  a  brake  upon  the  instability.  The  ratio of the 
effective stability  to  the  moist  stability, Z/cm, has been 
computed  for  both  the  slab  and circular solutions  for  vari- 
ous  values of ffw/ffd, and is  shown in  table 2 .  

We note  that  the  reduction is much  greater  for  slab 
than  for  circular  symmetry,  thus  favoring  development of 
the  lat,ter.  The  reason  for  this  behavior seems to lie in 
the  more  compact  nature of the circular disturbance. 

TABLE 2.-The ratio of effective stability  to  moist  stability  for  various 
values of the  ratio of moist  to d r y  stability 

~ ~ "_ -~ "_ ~ ~ ~ " _  -a,/oa .......... ~.~~~~ ..... 1 0 . 0 1   0 . 1  1 0 . 3  ~ 0 . 5  ~ 1.0 ~ 10.0 ~ - ;/am Circular __... ~.~ ....... 0.0 0.211  0.299 0.357  0.451 0.760 1.000 

;/cm Slab ____... ~~ ......... I 0.0 1 0.037 1 0. 101 1 0.153 I 0.250 1 0. 624 I 1.000 

The  plotted  curves for +, w ,  and V show that these  func- 
tions  have  their  largest  amplitudes  within  and  very close 
to  the  moist region for  the circular case, but exhibit  a 
much slower damping  in  the case of slab  symmetry.  Thus 
the  latter  may be effectively "larger" and hence less ac- 
tive  than  the  former, for a  given  width of the  moist region. 
Thus  bands seem to be less efficient than circular disturb- 
ances €or release of convective  instability  and  the large 
frequency of occurrence of such  bands  must be explained 
as  a consequence of the  vertical wind  shear  or  other effects, 
e.g.,  turbulent  dissipation,  not considered in  this  study. 

The  solut'ions  for V show that  the maximum  radial  and 
tangential winds both  occur a t  the  internal  boundary,  that 
is, a t  the  outer  limit of the  moist region. In  section 9 it 
is shown that nonlinear  terms  have  a considerable effect 
on the  tangential wind distribution at  rather small dis- 
turbance  amplitudes. It may be noted  that w ,  horizontal 
divergence, and relative  vorticity  (not  shown)  are discon- 
tinuous a t  t)he internal  boundaries. In  the real  atmosphere 
these  discontinuities  would  presumably  be replaced by 
sharp  gradients. In  t'he  dry region relative  vorticity is 
negative, corresponding to  conditions  in t,he outskirts of 
tropical cyclones as observed by  several  Japanese meteor- 
ologists (Ootani  and  Hatakeyama [16]; SyBno et al. [22]) .  

CASE 2 
The  boundary  conditions  for case 2 are  identical  to 

those  obtainable  under  the  assumption  that  another dis- 
turbance of identical scale and  amplitude  adjoins on either 
side of t'he  one under  consideration.  Thus we may  in- 
vestigate  the  behavior of a  convective  band  and $he  con- 
straints imposed  upon it by  the existence of neignboring 
bands. An int,eresting  result  is  the  appearance of a limi- 
tation on the  ratio of horizontal  extent of the moist  and 
dry regions for existance of unstable  solutions; that is, 
a  limiting  proximity of adjoining  bands.  The  external 
boundary condition here consists of vanishing of the wind 
component  normal  to  the wall. After  applying  this con- 
dition  to  the  elementary  solutions of (17), it is  found that 
urn is  unchanged,  but wd is replaced,  for  the  slab  symmetric 
case, by  an expression involving hyperbolic cosines. The 
fields of w ,  +, and u are  illustrated, for this case, in figure 
5 .  The  compatibility condition is altered  to  the fol- 
lowing  form : 

where *x1 is the abscissa of the  ext'ernal  boundary,  and 
thus x,-L is the  half-width of the  dry region. 

Examination of (36) shows that  the horizontal  constraint 
reduces  the effective instability,  and a vanishes for (xl--L)/ 
L=-ad/ff,. This is the  minimum  ratio of the  separation 
of convective  bands  to  their  width, i.e. the clear-cloud 
ratio,  for which the  bands  may  amplify.  Depending  on 
t)he vert'ical  dimension of the  disturbances,  table 1 indicates 
that t'his ratio  may  vary  from  about'  one  to  three  in  the 
mean  tropical  troposphere.  This revision of the  stability 
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FIGURE 5.-Type 11, case 2, horizontal  solutions,  moist  region FIGURE 6.-Type 11, case 3, horizontal  solutions,  moist  region 
hatched. (A) w a t  p=p0/2 .  (B) Q a t  p=po.  (C) ( -u )  a t  p=po .  hatched. (A) w a t  p = p 0 / 2 .  (B) Qat  p=p,. (C) (-u) a t  p = p , .  

criterion  bears  a close relation  to  the conclusions of the 
“slice” method of forecasting  convection,  first  introduced 
by J. Bjerknes [Z]. 

CASE 3 

Taking  the  radius of the  “eye”  equal  to a, where a<L, 
we specify a  stability  distribution  as follows: 

The  horizontal  solution €or W ,  with  slab  symmetry, is pro- 
portional  to  the  hyperbolic cosine in  the  eye,  sinusoidal  in 
the moist  region,  and  as before, a decreasing exponential 
outside.  The horizonbal profiles of w ,  a, and u are  exhibited 
in figure 6; circularly  symmetric  solutions  are similar in 
appearance.  The  compatibilit,y  condition becomes 

By comparison of (38) with (33), it can  be seen that F 
is greater  for tthis case, and  the  “eye”  tends to increase  the 
growt.11 rate.  The  amount of this  increase  however, is in- 
significant. For urn= -0.3X lop3 and  circular  symmetry, 
an eye  wit’h  a  radius ol0.1 L ( K O  that of the  moist region) 
increases effective static  instability  by less than 2 per- 
cent,  thus  changing  the wave equation  only  very  slightly. 
Although  the eye  plays an indispensable part  in  mainte- 
nanc,e of a tropical cyclone, as first shown by  Haurwitz 
[9], it, evidently does so by  means of nonlinear  terms not 
considered in this  study. 

The  vertical  motion  distribution  in  the eye case, as 
shown in figure 6, exhibits  a  downdraft region in  the eye, 
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associated  with an  indetectably  slight surf'ace high  pres- 
sure  area  and  slight  .anticyclonic  outdraft  winds.  The 
vorticity  and  vertical  motion  are  again  discontinuous  at 
both  internal  boundaries. 

CASE 4 

This case was also picked to  represent  a  certain physical 
feature of the  tropical  cyclone;  that is, the observed exist- 
ence of convective  bands  in  the  out'er regions of t'he storm. 
Here we consider the  integrated effect of a  large  number 
of smaller  disturbances of the  type considered in case 2. 
A rather  interesting conclusion of this case, in combina- 
tion  with  the  results of case 2 ,  is that'  a forcing disturbance 
is a necessary  condition  for  development of' large-scale 
unstable  convective  motion  in  the presence of smaller 
scale convection.  This conclusion is  a  consequence of the 
effects upon a large-scale system of the drS descent  sur- 
rounding  smaller cells. 

For  this  model it is assumed that  an  inner region of a 
developing cyclone-scale disturbance consists of many 
alternate  bands of moist  ascent  and  dry  descent. It 
should  be  remembered that  the growth  exponent p is as- 
sumed  constant  throughout, so that only  the  quasi-steady- 
state  features of the meso-scale bands  are considered. 
The  shorter  lived cloud-scale cells may be t'hought of as 
generating  the  proper  conditions  (moisture, especially) to 
assure  maintenance of the  bands  and,  by  their  compensat- 
ing  downdrafts  and  drying, to maintain  spacing between 
the  bands,  according  to  the  spacing  requirements  derived 
in case 2. A band  is,  for  simplicity, considered at  a con- 
stant  distance  from  the  disturbance  center, rat'her. than 
parallel  to  the low-level wind flow, as seems  to be the  actual 
case in  tropical cyclones. 

Methods used  for  finding  solutions for the  previous cases 
become  tedious  when  a  large  number of narrow  bands is 
assumed.  Instead it is desirable  to define some sort of 
averaged  stability  value  appropriate t o  an  area  contain- 
ing  an  infinite  number of alternating  moist  and  dry  bands, 
which we do  in  the following manner.  Consider  two 
infinitesimal  bands,  one  moist  with  stability uto<O and t'he 
other  dry  with  stability ad>O, and  let  the  rat'io 01 the 
width of the  moist  band  to  that of the  total  width of b9th 
be U. Since the  bands  are considered  infinitesimal  relat'ive 
to  the  hrge-scale  disturbance, we may consider t'hat in 
each of the  moist  and  dry  bands @ is approximately  hori- 
zontally  constant,  and  by  application of (14) @ is therefore 
approxirnately  constant  over  both  bands.  Further, 
b%/bpbt is also approximately  constant  and,  by  application 
of (2) and  (4), uzow,=cdwd, where wzo and wd we  the 
(approximately  horizontally  constant)  vertical velocities 
in the  moist  and  dry  bands,  respectively. If we define 
the  average  value of w (across both  bands)  to be 
I; = U w  zo + (1 - U)w,, then 2; = cWw, = cdwd if 

-="f"-- 1 u 1 " C T  (39) 
CT CT 11: c d  

Thus a relates  the  average expansion of air  to  the  average 
vertical  motion  and  could  be  alternatively defined as 

I JJ..d.ll?l 

JJwdxdy 
U= (40) 

where the  integral is taken over the  banded  region. If U 
is constant, (39) and (40) can be  shown  to be equivalent. 
We define Cr t'o be the  band  stability. 

From (40) one  can see th,e possibility of an infinite  value 
of a, if U= --cm/(ud--cm), implying that  heat is released 
from  vertical  motions, but  the  mean  vertical  motion is 
zero. In  t'his case divergence and  relative  vorticity  van- 
ish.  Hughes [ 1 I]  has shown this  to be approximately  the 
condition in the  outer  rain  bands of tropical cyclones. 

An even  more significant conclusion comes  from  a  com- 
parison of relation (39) with  the conclusions of case 2. In 
case 2 we look at  the convective  band  as  a meso-scale 
phenomenon,  associated  with  disturbances of small size 
and  rather  rapid  tune  variations, while in case 4 we con- 
sider  the  band from the large-scale quasi-steady-state 
point of view, disregarding all transient  features.  In 
equat'ion (36) and  subsequent, discussion it was  shown that 
a small-scale disturbance could  grow  only if the  ratio of 
moist  to  dry  area is less than or equal  to  the  ratio of dry 
t'o moist  stability. On the  other  hand, (39) indicates that 
the  band  st'ability for large-scale disturbances is negative 
only if the  ratio of moist  to  dry  area is greater than  the 
ratio of dry  to moist  stability.  This  means  that  a cyclone- 
scale convective  disturbance  cannot develop as simply  an 
amalgamation of smaller-scale cells, but  must include at 
least  a rneso-scale central core of moist  ascent,  presumably 
generated by a  disturbance whose  energy  is  derived  from 
other  t'han  convective  instabilities. 

Having  postulated  the existence of such  a core we now 
assume  three  distinct regions with different values of 
stability; i.e., 

ff=fJu.<o, Izl<b 

c=fJo+- co , b<lz(<2L--b } (41) 

u=Ud>O; 14>2L--b 

wherr a(L"b)  is the  width of t'he banded region. The 
solutions for @ in the  inner  and  outer regions are  similar 
to  those of case 1, while that for  the  banded region shows 
a  linear  variation  with z (logarithmic  with r for  circular 
symmetry).  These  solutions  are  exhibited in figure 7. 
The  compatibility  condition is found  to be the following: 

t,wn [ k ( ~ / u Z L . ) 1 ~ 2 ~ / l J ] = [ ( - c d / u z o ) 1 ' 2 - ~ k ( ~ / u 2 0 ) 1 ~ * ( ~ - b ) / J ; ] "  

(42) 

which shows that  the  banded region has  a  dynamic effect 
midway  between that of an  all-dry  and  an all-moist region. 
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FIGURE 7.-Type 11, case 4, horizontal  solutions, moist region 
hatched  solidly,  banded region hatched  lightly. (A) w a t  p = p 0 / 2 .  
(B) @J a t  p=po.  (C) ( -u )  at p = p o .  

6. TYPE I11 SOLUTIONS 

Considering u to be a  function of pressure, we again 
separate  variables  in  (17).  The  resulting  reduced  equa- 
tions may be formally  written  in  the  same  form as (18) 
and (23), and  the wave equation  (25)  holds for an effect'ive 
stability Cr, provided that u, 6,  and K are  related  by  the 
expression 

K= (u/Z)1'2na (43) 

Thus, 0, which may be a  function of n, can be found  from 
solution of (18) with  boundary  conditions. Again we 
specify n=l for purposes of this  study.  In  this  section 
two cases are  exhibited. 

Case 1: Constant  negative  stability in the troposphere, 
constant  temperature  in  the  stratosphere. 

Case 2: Stability values equal  to u, in table 1 for 

pressures  above 100 mb.,  constant  temperature for 
pressures below 100 mb. 

CASE 1 

Here we investigate  the effects of a  sharp  tropopause 
discontinuity  in  static  stability. It is  shown that  the 
st,ratosphere  acts effectively as  a  lid  to  the  disturbance 
and  can be considered as  equivalent  to  applying  a solid 
surface  boundary  condition a t  a level slightly  above  the 
tropopause. 

We prescribe u for  the lower and  upper  layers,  re- 
spectively,  by  the following expressions: 

f f= f fT<O forp>pT (444 

;=US = R2 TS/cpp2 for p<pT 
- 

(44b) 

where UT is a  negative  constant  and  equation  (44b) is 
obt'ained  from (7) with Fs the  stratosphere  temperature. 
Solutions to (18), with K evaluated  from  (43),  (44a), 
and  (44b),  satisfying  the  external  boundary  conditions 
(8) and (12)  may be written  as follows: 

P Z A T  sin [..(uT,~)1'2cr)O-~)/pn1, p>pT (45a) 

P=AS(p/p3)1'2+N, p<pT (45b) 

where 

Internal  boundary  conditions  (15)  lead  to  a  relation 
between the  amplitude coefficients As and AT and  to a 
compatibility  condition  which  can be  solved to yield 
u. This  may be written - 

tan [a(~T/~)"2(PO-PT)/~"l=-(N+~)[~(uT~)1'2PT/~O~. 

(46) 

Solut'ion of (46)  shows that Cr/u,<l. We now show that 
reduction of instability  by  the presence of the  strato- 
sphere is identical  to  the effect of a  rigid  boundary a t  
p = p H ,  where pH<pT. We set ff=uT for  all p>pH, and 
define pH by  the  relation 

@o-pd/pn= (;/UT) "'- (47) 

Substit'ution of (47) into  (45a) shows that P, and  therefore 
w ,  vanishes a t  p=pH. Values of p H  and  computed 
from  (46) and  (47) for various  values of pT are  given in 
table 3. 

TABLE 3.-The  equiualen!  rigid  tropopause  level,  pB,  and  the ejj'ectiue 
static  etability, i?, for various  values of the tropopause  pressure, pT 

PT (mb.1 1 z/"r I PH (mb.) 
"_______" 
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o A N D  ( r e l a t i v e  u n i t s )  

FIGURE 8.-Type 111, case I, vertical  solutions (D (solid line), w 
(dashed  line),  scale  units  normalized by maximum  abscissae. 
Dash-dotted  line  represents  equivalent  rigid  tropopause.  Hatched 
area is statically  unstable. 

Solutions of case 1 for o and (D are  presented  in figure 8 
for p,= 100 mh., nT= -3X  10-3m.2mb.-2sec.-2,  and 
T,=200° K. The curves  further  illustrate  the ext'remely 
rapid decrease of disturbance  amplitude  above  the  t'ropo- 
pause. 

- 

CASE 2 

Here  the  distribution of stabilit'y  with  height is  relatively 
smooth.  The  results of the  numerical  integration of 
(18) for this case show,  however, that  again  the  principal 
effect of an  upper  stable  layer is to  diminish  the effective 
depth of a  disturbance  and  reduce it>s growth  rate 
correspondingly. 

The  solution  for  this case was found  by  numerical 
integration of (18) using (43),  and  with n=nl, cvaluat,ed 
from  table 1 for  p>100  mb.,  and u taken  from  (44b)  for 
p<100  mb.,  where Fs=2OO0 K. The Gill [6] formulation 
of the  Runge-Kutta  integration  scheme,  as  programmed  for 
the IBM 704, was  utilized  in  forward  integration  from 

W AND & ( r e l a t i v e   u n i t s )  

FIGURE 9.-Type 111, case 2, vertical  solutions. D (solid line), w 
(dashed  line),  scale  units  normalized  by  maximum  abscissae. 
Hatched  area is conditionally  unstable. 

one  boundary  to  the  other. An initial guess of was made, 
and t.his was  improved  by  means of Newton-Raphson 
itmeration  methods  until  both  boundary  conditions (8 )  and 
(12) were satisfied to sufficient accuracy.  The  method 
was  checked by  comparison of results  for cases with known 
analytic  solutions,  such  as case 1 of this  section. 

Figure 9 shows the  solutions  obtained for w and 0. 
The  unstable region is shaded,  and  above  this region the 
disturbance  amplitude  rapidly decreases, becoming imper- 
cept'ible in the  stratosphere.  The  value of a found for 
t'his  solution is -2.732X  m.2  mb.-2 set.?. This  result 
provides  justification  for  the  value of -3X10-3 used in 
evaluation of the  stability  criterion. 

In comparing  the  sinusoidal  vertical solutions of type I, 
equations (24)-(28) and figure 2, with those of this section, 
we note  that  the  sign of the  geopotential  disturbance 
reverses  from  low  to  high levels in  both cases. This is 
generally  true  for  any  solution of the  linear  set (1)-(4) in 
which there is a  reversal of the sign of divergence with 
height, since is proportional  to D. This  proportionality 
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does not seem to  accord  with  the  true  situation  in well- 
developed  tropical  cyclones,  which  exhibit  cyclonic rota- 
tion  and  negative  disturbance  geopotentials  to  great 
heights  in  their  inner regions, and  at  the  same  time  large 
negative  values of relative  vort'icity  and  divergence. 

In order  to explain the  disparity  between  the model and 
observations,  attention is directed  to  the  nonlinear  terms 
of the  motion  equations. We show  in  a  later  section  that 
those advective  terms  do seem to be responsible  for ex- 
t'ending the cyclonic  wind field to  higher  levels  as  the 
disturbance  amplitude becomes significant. In the  very 
early  stages  the  circulation  reversal  might  be  observed, 
but even then  it c,ould be masked if the  dist'urbance de- 
veloped within a preexisting  circulation. 

In order  to  further  invest'igate  this  problem, one  could 
set  up  perturbation  equations  on  a basic  nondivergent 
vortex.  These  equations become quite  complicated when 
both  horizontal  and  vertical  shears  are  involved,  and 
analytic  solutions  are  out of the  question  for  any  physically 
reasonable cases. Rather  than solve the  perturbation 
equations  by  numerical  methods, i t  would  seem  more 
profitable to solve the  nonlinear  equations  directly,  as  an 
initial  value  problem.  Berkofsky [l]  has developed a 
numerical  scheme  for  doing  this. A deficiency of Ber- 
kofsky's  model is that,  it excludes gravitat'ional waves by 
means of a balance  equation,  and  thereby  eliminates  the 
type of linear  motions  discussed  in  this  paper. 

7. SURFACE  FRICTIONAL  EFFECTS 
c 

If one  assumes that a  frictionally-forced updraft can 
be adequately expressed as  a  boundary  condition of the 
form of (13), then  this  boundary  condition  may be used, 
in place of ( la) ,  to  determine coefficients of the  element'ary 
solutions of (18). The resulting  transcendental  may be 
used, as  with  the  type I11 solut'ions,  to define an effective 
static  stability, a, which  satisfies the wave  equat'ion. Thc 
definition may  be  written  as: 

where we assume that O<B<I for p<jand -1<B<O for 
q>f,  and pF -900 mb.=0.9po.  For  large  disturbances, 
where q e f ,  the  argument of the  tangent'  approaches 
7r/2. Therefore (E/u)ll2 "2 and  the  largest  unstable dis- 
turbance  diameter is nearly  doubled.  On  the  other  hand 
small  disturbances wit'h p>f lead  to  values of (Z/u)'lz<l. 

8. ENERGY  RELATIONS 

1.y RELEASE OF I\\\\\\\ T R A N S P O R T  I 
TO DRY REG1 

FIGURE 10.-Partition of energy  released by latent  heat of con- 
densation.  Hatched  area  represents  the  moist  unstable  region. 

where .%=V.V/2. If (49) is integrated  over  all space, 
given external  lateral  boundary  conditions as prescribed 
in  section 3, and w vanishing at  the  upper  and lower 
boundaries,  the  first  two  terms  on  the  right vanish. 
After  multiplying (4) by a/ud, where u d  is  the  static stabil- 
ity for dry processes, we obtain  an  equation  for available 
potential  energy,  similar  to  that defined by Lorenz [13]. 

=- 
where A=a2/2ud.  , 

The  integrated  sum of t49) and (50) vanishes  for  dry 
processes, so that ( - a m )  is clearly  the  transformation 
from  available  potential  to  kinetic  energy  for  the dry 
process. For  moist  motions, where cr=uw, the  term 
(ud--uW)aw/uW is evidently  the  transformation of latent 
heat  to  available  potential  energy  and is positive when uw 
and w are  negative  and a positive. 

In  the  type I1 and 111 solutions of this  study  the energy 
relations  are  complicated  somewhat by  transports across 
the  internal  boundaries.  The  complete  budget  has been 
evaluated for type 11, case 1: and shows  several  interesting 
features. If we assume (7/am)'/?=0.3, from  table 2, and 
express  all quantities  as  multiples of J ,  the botal released 
latent  heat  energy,  the following results  are  obtained. 

--- 0.367 J ;  g w = 0 . 2 0 6 5 ]  
dt  bt 

It is of interest  to  consider  the  energy  transformations 
and  transports  in  our linearized system.  The  kinetic 
energy  equation,  obtained  by  dot  multiplication of (1) 
by V, may  be  written  as follows: 

a3f b 
- =-V+/@)-- (w+)-aw at bP (49) 

where J=0.585 (-uW/q)  and &=- J ~ L ' " A . l p d z ,  
- 1 

=PO 

with  other  quantities  similarly defined. Figure 10 shows 
the  relationships of t'hese  various  energy  terms. We see 
that of the  total  energy released by  latent  heat  in  the moist 
region 26.7 percent  remains  within  the  moist  region, 6.1 
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percent  as  kinetic  energy,  and 20.6 percent  as  available 
potential  energy. Of the 73.3 percent  which is trans- 
ported  into  the  dry  environment  (that is, nearly  all of the 
transformation  term), half  is released as  available  potent,ial 
energy  and half as  kinetic  energy.  Kinetic  energy  repre- 
sents 42.7 percent of the  total  production. 

It is interesting  to  compare  these  results  with  estimates 
of the  energy  budgets  in  tropical  and  extratropical cy- 
clones. Palmen  and  Jordan [18] have  estimated  that 
about 30 percent of the  kinetic  energy release in a  steady 
state tropical cyclone occurs within  the  inner 2' latitude, 
where most of the  latent  heat  energy is  released,  the  re- 
maining 70 percent  being released mainly  in  the 2'-6' 
ring. In  our  model  the  corresponding  percentages  are 
about 16 percent  and 84 percent.  Palmen  and  Jordan 
find, however, that  the  total kinetic  energy released is 
only  about 2j4 percent of the  total  latent  heat  energy 
released, as  compared  to  our 42.7 percent.  PalmQn [17] 
in his analysis of hurricane  Hazel,  found  that  the  kinetic 
energy released during  the period of transformation from 
a  tropical  to  an  extratropical cyclone was about 12.5 

If we regard  convective  disturbances  as eddies within  a 
larger-scale environment,  the  advective  terms of the 
thermodynamic  equation  represent  the  eddy  t'ransport of 
heat.  Thus  from  the  linear  solutions we may  to some 
degree approximate  the  convective  heat  transport of the 
linear  systems. 

We define V', @', w ' ,  and a' to be the second-order var- 
iables  appearing when our  linear  solutions  are  substituted 
into  the  nonlinear  terms of the  motion  and  heat  equations. 
Equations for these variables  may be written  as follows: 

"+j k x V' 4-v a'= -v*vv-w- bV' 
bt bp 

bV (52) 

(53) 

(54) 

( 5 5 )  

percent of the  latent  heat  energy  released,  but  he was 
unable  to  estimate  the  transformation of available  poten- 
tial  to  kinetic  energy  during  this  time. 

It seems, therefore, that  the mechanical efficiency of 
our model  is  considerably too great,  as  compared  with 
real large-scale systems.  This is due both to the neglect 
of dissipative  terms in this  development  and  to  the con- 

If solutions of ( 5 )  and  any of the  boundary conditions 
used in  this  study  are  substituted for the  variables on the 
right side and  the  system  reduced  to  an  equation  in w ' ,  
it' may be  shown that  the inhomogeneous  (nonlinear) 
terms  are  eliminated except for the  last  one  in (55), and 
(52)-(55) reduce to 

siderable  changes  in  dynamics  as  the  real  disturbance 
develops and loses both  its  static  instability  and  its  vertical 
symmetry,  by  means of vertical  and  horizontal  advection. 

9. NONLINEAR EFFECTS 

It is recognized that  the  atmospheric  phenomena  dealt 
with  in  this study  frequently  attain  an  amplitude  at which 
the  nonlinear  terms of the meteorological equations  are 
substantially  larger  than some of the  linear  terms.  This 
is certainly sufficient cause  for an examination of the fore- 
going results  to  determine in what  way  they  might be 
altered  by inclusion of these  nonlinear  terms  in  the basic 
differential  equations.  One  method of approximating  the 
nonlinear effects is to  substitute  the  linear  solutions  into 
the  nonlinear  terms of the complete equations  and  thereby 
obtain  a second-order  approximation  to  the  true  non- 
linear  solutions.  This  might  be considered as  the begin- 
ning of an  iterative process, in which  each  solution  gen- 
erates  the  terms of a  subsequent  higher  order  equation. 
The existence and convergence of such  solutions  has  been 
demonstrated  by  W.  Malkus  and Veronis [15] as  applied 
to  a BBnard convection cell problem. The process is 
tedious  when  carried out  to higher orders. In  fact  the 
first  .iterative  step  for  our  system  results  in  an inhomo- 
geneous  differential  equation,  probably  only  numerically 
solvable,  We  are  able,  however,  to  obtain  information  as 
to  the  relative  orders of magnitude  and general effects of 

A particular  solution of (56) may be  formally  written as 
IOIIOWS, where p' and p" are  dummy  variables. 

In  order  to show the  general  nature of the solutions of 
(52)-(55), we consider a  somewhat  simpler case. If the 
atmosphere were incompressible, the  last  term on the 
right sides of (55) and (56) would  vanish.  This  assump- 
tion  alters  the  static  stability  parameter, U, in  that K is 
assumed infinite. Other  than  this change in  interpreta- 
tion  the  nature of the  perturbation  equations  and  their 
solutions is entirely  unchanged. In  this case the  par- 
ticular  solution for (57) is 

w'=O. (58) 

This is not  trivial, since the  remaining  terms on the  right of 
(52) and (55) do not  vanish. W, V', and a' are found to 
be the following: 

the  nonlinear  terms. (59) 
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For  the  perturbation cases exhibited  previously a’ is a 
function of pressure  only,  the  tangential  velocity  is  a  func- 
tion only of the  horizontal  coordinate,  and a’ is a  sum of 
the  integrals of these  one-dimensional functions. In  
figure 11 are shown horizontal profiles of v f  and  the  hori- 
zontally  variable part of @’ and  vertical profiles of aut’ and 
the  vertically  variable  part of where ow and o d  are 
obtained  from  the  perturbation  solutions of type 11, case 1 
with slab  symmetry.  The  vert,ically  variable  parts of 
ad’ and ad’ vanish  identically. 

We are now able  to  verify  the  statements  made  in 
previous sections  about  the  probable effects of nonlinear 
terms.  From (59) and figure 11 one sees that  the  tan- 
gential  wind field is changed by a  term which is cyclonic 
at all levels within  the nloist, region (a,<O), the  vorti- 
city of which has  a  positive  maximum a t  t’he 
center. In  the  dry region there is a  corresponding  anti- 
cyclonic wind, but of a  much  smaller  magnitude,  pro- 
portional  to ( -uW/uJ3 times  that of the  moist  region. 
These terms  evidently  tend  to  bring  the  pert>urbation dis- 
turbance  into closer agreement  with bropical cyclone wind 
profiles. 

The a’ field tends  principally  to lift the  level of the 
maximum heating,  thus  destabilizing  the  upper  levels  and 
a l h i n g  the  developing cyclone to  extend  to  much  greater 
heights than  the 5-km. depth of normal  conditional  insta- 
bility  in  the  tropical  troposphere.  The +’ field is composed 
of two parts.  The  vertically  variable  component is the 
hydrostatic  integral of a’ and  leads  to decreased  geopo- 
tential at  intermediate  pressure  levels,  consistent  with  the 
increasing depth of the cyclonic portion of the  disturbance. 
The  horizontally  variable  component of @’ has  its  maxi- 
mum amplitude a t  the  center,  with  the sign in  the moist, 
region the  same  as  the sign of 2q2-.f2. Thus if the  linear 
disturbance  is  small  and  rapidly  growing,  i.e., 2q2>>f”, this 
term  represents  a filling tendency. If 0<2q2<f2, however, 
both  the  linear  and  nonlinear  terms  provide low-level 
deepening a t  the  center.  The  latter  inequality  then 
appears  to specify a  rather  narrow size range  within which 
disturbances  may  continue  to  grow  to  significant  ampli- 
tudes, and  thus  represents  a second-order stability 
criterion. It is not clear whether or how an initial dis- 
turbance  might  alter  its size or shape to  adjust to  this 
criterion, nor is it certain how the  compressibility  term 
in (56) might  change matters,  but  the effect may  have  an 
important  bearing on the  observed  bimodal  distribution 
of convective disturbances. 

We now make  quantitative  estimates us to  orders of mag- 
nitude of the nonlinear terms. If aut= “3x 10-31n.~mb.+ 
sec.-2, and f=5X sec.”, by comparison of (59)-(61) 
with (26)-(28) it may  be shown t’hat a’/a and V’/G are 

541417-60-3 

d:and k$ ( r e l a t i v e  u n i t s )  

FIGURE 11 .“Second-order  components of nonlinear  solutions for 
type 11, case 1. (A) Horizontal  profiles of v’ (solid) and W 
(dashed). Moist region  hatched.  Scale  units  normalized by 
maximum  ordinates. (€3) Vertical  profiles of @ I w  (solid) and 
atw (hatched). Scale  units  normalized  by  maximum  abscissae. 

approximately  unity for !@,I=300 m . 2  set.+, or a  surface 
pressure  amplitude of about 4 mb.  The first term of @’ 
is of the  order of /@I when (@/=600 m.2 sec.-2, a  pressure 
amplitude of 8  mb.  The second term of @’ depends  on its 
coefficient which may  vary  from -2 to +l. If q = j / 2  
this  term is of the  order of when  [@I=1500  m.2 sec.-2, 
a  surface  pressure  amplitude of 20 mb.  Thus  the second- 
order  stability  criterion discussed above  only becomes 
effective when the  amplitude is substantial.  At  this 
stage  the  other  nonlinear  terms  may  have  distorted  the 
dynamics of the  system so much  that it is no longer 
applicable. In  any case it is clear that  the  study of tropi- 
cal cyclones by  means of linear  theory  must  be  limited  to 
rather  small  amplitudes. 

With  respect  to meso-scale disturbances, the above 
amplitudes seem  somewhat  more  liberal. A surface 
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pressure  disturbance of greater  than 4 mb. is  probably 
not  greatly exceeded  even in  a  squall  line or hurricane 
convective  band. 

We  now consider the  nonlinear  vertical  heat  t'ransport 
by  the  linear  disturbance  solutions. In  the present,  system 
heat  energy is equal  to (c,/R)orp. 

After  multiplication of (61) by (c, /R)p and  integration 
over  a  horizontal  distance X ,  we obtain  the expression for 
average  vertical  transport': 

(62) 

where the  conlpressjbilit8y  terms  have  again  becn 
neglected. 

If X is large or the  disturbance is bounded, as in  type 
11, case 2, the  end-point  term  may  be  neglected.  The 
term a w has  opposite  signs  in  the  moist  and  dry regions 
but  the  integral is dominated  by  the  contributions from the 
moist  unstable region and is negative,  with  a maximurn 
in  the  mid-troposphere.  Thus  for  t,ype I1 solutions 

lower to  the  upper  levels. 

10. SUMMARY  AND CONCLUSIONS 

Solutions  to  a  complete  set of linearized  quasi-stnt'ic 
meteorological equations  under  conditions of moist parcel 
instability  have  been  obtained  and  investigated.  The 
assumptions  made, besides the  usual  perturbation  require- 
ments,  included zero basic flow at  all levels. constant 
Coriolis parameter, no orography,  and  upward  motion 
always  saturated  and downward motion  either com- 
pletely  unsaturated or completely  saturated. 

The solutions  obtained  are  essentially  internal  gravita- 
tional  waves,  their  dynamic  stability  criterion  depending 
upon  the  horizontal  and  vertical scales of motion,  the 
value of the Coriolis parameter,  the  static  stability for dry 
and  moist  motions  and  its  vertical  variation,  and  surface 
frictional  drag  and/or forced ascent.  Unstable  nlotions 
exist for horizontal scales of motion  smaller  than  a  limiting 
radius of several  hundred  kilometers,  and  the  maximum 
growth  rate  occurs  for  disturbances whose  horizontal 
extent is about  the  same  as,  or  smaller  than,  their  height. 
The conclusion that cloud-scale motions grow  more rapidly 
than those of meso- or cyclone-scale obviously  does  not 
preclude  the existence of the  latter,  but relegates  their 
explanation  to  methods  not used in  this  study. It 
appears,  further,  that  the smaller-scale motions,  because of 
their  compensating dry  downdraft regions, tend  to dis- 
courage  development of larger-scale  disturbances unless, or 
until  an organized  meso-scale or large-scale ascending core 
can  be  established  by  nonconvective processes. 

A  number of disturbance models, differing in  the 
arrangement of moist  and  dry regions, boundary condi- 

tions,  and  the  vertical  static  stability  distribution were 
investigated,  and  the  effects  on  dynamic  stability expressed 
in  terms of an effective static  stability. It was found 
that  the existence of a dry  stable region with  descending 
motions  surrounding  a  moist  ascending  center  (type 11, 
rase 1) decreases the effective instability  in  comparison 
wit'h that of a  disturbance where both  ascent  and  descent 
are  moist  unstable. A dry  downdraft or "eye" in  the 
center (case 3 )  exerts  little influence, while regions of 
bands of alternating  moist  updraft  and  dry  downdraft 
(case 4) have  effects  midway between  those of each of 
the two  components.  Mot'ions  are  very  rapidly  damped 
above  a  tropopause  or base of a stable  layer  (type 111, 
cases 1 and 2 ) ,  and t'he latter  acts effectively as  a solid 
surface. 

The lower boundary  condition used generally  was  that, 
w = O  at  p=p,, but  replacement of t'llis condition  by  one 
more closely akin to the  true  atmospheric  boundary 
condition  had  very  little effect on  result,s. 

The effects of surface  friction  were  evaluated  in  a 
rat'hw  crude  fashion,  and  results  indicate  that  instability 
is increased  somewhat by this effect for cyclone-scale 
disturbances,  and  that  the  maximum possible disturbance 
size increases considerably. 

It was  shown that  an  internally self-consistent energy 
equation  can be writt'en  in  which,  disregarding friction, 
t'he sum of the  productions of kinetic  and  available 
potential  energy is  equal  to  the  heat released by con- 
densation.  Analysis of this  energy  equation  shows Ahat 
most of the  kinetic  and  potential  energy is released in 
the  outer descending region despite  its origin in  the  heat 
released in  the  inner  ascending region. The mechanical 
efficiency of the  system was found  to be  several times 
higher than  that of observed  tropical cyclones. 

Finally,  tmhe effects of nonlinear  terms  in  the  primitive 
equations  and  energy  equations were considered. It was 
found  that  disturbances of cyclone scale are essentially 
nonlinear  almost  as soon as  detectable,  but meso-scale 
motions  maintain  their  linear  character  somewhat longer. 
The  nonlinear  terms of the cyclone-scale disturbances 
tended to bring  the  linear  disturbances  into closer agree- 
ment  with observed struct,ure.  Further,  these nonlinear 
terms  yield  a  second-order  stability  crit'erion which per- 
mits  subsequent  deepening of a  small-amplitude  disturb- 
ance  when the  horizontal dimensions are only slightly 
smaller than  the critical  (vanishing  linear  growth  rate) 
size; that is, for  disturbances of the observed scale of 
tropical cyclones. 

The  results of this  study  fully  corroborate  Malkus  and 
Riehl's [14] recent work indicating  that  further significant 
progress toward  solution of the  problem of tropical cyclo- 
genesis will require  more  detailed knowledge of the 
dynamics,  thermodynamics,  and  perhaps hygro-kinematics 
of cloud-scale and meso-scale  convection.  The smaller- 
scale  convective processes tend  to  hinder cyclone develop- 
ment,  both  by  the  disruptive effects of dry  downdrafts 
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surrounding  the  updraft  elements,  and by the  stabilization 
due  to  their  nonlinear  heat,  transports.  These effects 
alone may  be sufficient to  limit  development of tropical 
cyclones to  areas  and periods  when strong forcing  dis- 
turbances  cause  general  ascent  and  moistening of a 
substantial  area. 

ACKNOWLEDGMENTS 

The  author wishes to  express his sincere thanks  to 
Prof. Seymour L. Hess for  his valuable  suggestions  and 
criticisms, and  to Drs. J. Smagorinsky  and S. Manabe, 
whose suggestions  and  encouragements were exceptionally 
helpful. The research  described  in this  paper w-as begun 

8. S. M .  A. Haque,  “The  Initiation of Cyclonic  Circulation  in a 
Vertically  Unstable  Stagnant Air Mass,” Quarterly  Journal 
of the  Royal  Meteorological  Society, vol. 78,  1952, pp. 394-406. 

9. B.  Haurwitz,  “The  Height of Tropical  Cyclones  and of the  
‘Eye’ of the  Storm,” Monthly  Weather  Review, vol. 63, No. 2, 
Feb. 1935, pp. 45-48. 

10. G. Hollmann, liZur Frage  der  Larmfilterung  in  den  Hydro- 
Thermo-Dynamischen  Gleichungen,” Reitruge  zur  Physik  der 
Atmosphure, vol. 31, No. 1/2, 1958, pp. 5-30. 

11.  I,.  A. Hughes,  “On  the Low-Level Wind  Structure of Tropical 
Storms,” Journal of Meteorology, vol. 9, No. 6, Dec. 1952, 

12. C. L. Jordan,  “Mean  Soundings  for  the  West  Indies  Area,” 
Journal of Meteorology, vol. 15, No. 1, Feb. 1958, pp. 91-97. 

13. E. N. Lorenz,  “Available  Potential  Energy  and  the  Mainte- 
nance of the  General  Circulation,” Tellus, vol. 7, No. 2, May 

pp. 422-428. 

at  Florida  State  Universtity  with  support’  by  the U.S. 1955, pp. 157-167. 
Weather B~~~~~ under contracts T \ ’ ~ ~ .  ~ ~ b - 9 3 9 5  and 14. J. Malkus  and  H.  Riehl,  “On the  Dynamics  and  Energy  Trans- 

Cwb-9683 and was  completed  at,  the U.S. Weather formations  in  Steady-State  Hurricanes,” National  Hurricane 

Bureau,  General  Circulation  Research Sect’ion. 
Research  Project  Report No. 31, 1959, 31 pp. 

15. W. V. L.  Malkus  and  G.  Veronis,  “Finite  Amplitude  Cellular 
Convect,ion,” Journal of Fluid  Mechanics, vol. 4, 1958, pp. 

1 .  1,. Berkofsky,  A  Numerical  Model  for  the  Prediction of Hurri- 16. T. Ootani  and H. Hatakeyama,  “Upper Air Current  in  the 
cane  Formation,  Unpublished  thesis,  Massachusetts  Institute Typhoon,” Geophysical  Magazine, vol. 6, 1932, pp. 97-122. 
of Technology, 1957. 17. E.  PalmBn, “Vertical  Circulation  and  Release of Kinetic 

2. J .  Bjerknes,  “Saturated-Adiabatic  Ascent of Air Through  Dry- Energy  During  the  Development of Hurricane  Hazel  into  an 
Adiabatically  Descending  Environment,” Quarterly  Journal Extratropical  Storm,” Tellus, vol. 10, No. 1, Feb. 1958, 
of the  Royal  Meteorological  Society, vol. 64, No. 275, Apr. pp. 1-23. 

REFERENCES 225-260. 

1938, pp. 325-330. 18. E. Palmbn  and C. L.  Jordan,  “Note on the  Release of Kinetic 
3. J. G.  Charney  and A. Eliassen, “A Numerical  Method for Pre- Energy  in  Tropical  Cyclones,” Tellus, vol. 7, No. 2, May 

dicting  the  Perturbations  in  the  Middle-Latitude  Westerlies,” 1955, pp. 186-188. 
Tellus, vol. 1, No. 2, May 1949, pp. 38-54. 19. N. A. Phillips,  “Numerical  Integration of the  Primitive  Equa- 

4. A .  Eliassen, “The Quasi-Static  Equations of Motion  with  Pres- tions  on  the  Hemisphere,” Monthly  Weather  Review, vol. 87, 

vol. 17, No. 3,  1949, 44 pp. 20. J. Smagorinsky,  “On  the  Numerical  Integration of the  Primitive 
5. F. Frankl,  “On  Cauchy’s  Problem  for  Partial  Differential  Equa- Equations of Motion  for  Baroclinic  Flow  in a Closed  Region,” 

tions of Mixed  Elliptico-Hyperbolic Type  with  Initial  Data Monthly  Weather  Review, vol. 86, No. 12, Dec. 1958, pp. 
on  the  Parabolic  Line,” Izvest izz   Akademii   Nauk  SSSR,  457-466. 
Serizi  MatematicheskaG, vol. 8,  1944, pp. 195-224. 21. S. SyGno, “On the  Formation of Tropical  Cyclones,” Tellus, 

ferential  Equations  in an  Automatic  Digital  Computing 22. S. Syijno, Y. Ogura, K. Gambo,  and A. Kasahara, “On the  
Machine,” Proceedings,  Cambridge  Philosphical  Society, vol. Negative  Vorticity  in a Typhoon,” Journal of the  Meteoro- 
47, 1951, pp. 96-108. logical  Society of Japan ,  Series 2, vol. 29, No. 12, Dec. 1951, 

-sure  as  an  Independent  Variable,” Geofysiske  Publikasjoner, No. 9, Sept. 1959, pp. 333-345. 

6. S. A. Gill, (‘A Process for the  Step-by-step  Integration of Dif-  vol. 5, No. 2, May 1953, pp. 179-195. 

7 .  C. L. Godske, T. Bergeron, J. Bjerknes,  and  R. C. Bundgaard,  pp. 397-414. 
Dynamic  Meteorology  and  Weather  Forecasting, American 23. G. N. Watson, A Treatise  on  the  Theory of Bessel  Functions, 2 i  
Meteorological  Society,  Boston,  Mass., 1957, 800 pp. ed.,  University  Press,  Cambridge,  Mass., 1944, 804 pp. 


